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LETTER TO THE EDITOR 
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Abstract. A more efficient algorithm for enumerating rigid clusters is presented. Using 
this algorithm we have extended the series of site-rigid animals enumerated by Prunet and 
Blanc by five more terms and we have also calculated, for the first time, the exponent 
governing the growth of the radius of gyration for rigid animals. 

In the study of critical phenomena, the series expansion technique has proven to be 
a powerful tool for calculating the critical exponent. The cluster enumeration is very 
time consuming when a longer series is needed. The computer time needed for cluster 
enumeration grows exponentially with cluster size. A Monte Carlo cluster enumeration 
[ 11 method has been proposed to enumerate clusters. The computer time grows linearly 
with cluster size. As a trade off, this method cannot enumerate clusters exactly, but 
only within a few percent (say) in a controlled way. Very often, we want to enumerate 
clusters which have some restrictions, e.g. clusters with no free ends, or rigid clusters, 
etc. It is possible to enumerate these clusters more efficiently. In this letter, we present 
an algorithm for enumerating rigid clusters on a site-diluted triangular lattice for the 
central force model [2]. In this model, the bonds between nearest-neighbour sites are 
present with spring constant k provided that the sites are present; a site is present with 
probability p and absent with probability 1 - p .  A rigid cluster can be defined as having 
only translational and rotational degrees of freedom. Hence a rigid cluster in two 
dimensions has three zero-frequency modes. 

There are two ways to generate rigid clusters. 
(i)  Generate [3] all one-loop clusters which are the exterior boundary of the rigid 

cluster. Then a rigid cluster is obtained by filling up all the possible interior bonds. 
This is particularly suitable for the bond-rigid animals. 

(ii) Use [4] Martin’s backtracking technique [5] to generate all clusters (lattice 
animal) and test their rigidity. Note that it is very time consuming to generate the 
lattice animal. 

In this letter, we present a partial enumeration method in which some non-rigid 
clusters (e.g. the clusters with free ends) have been excluded. Then it is much easier 
to test the rigidity of the rest of clusters because the number of these clusters is much 
less than that of the lattice animal (see table 1). Our algorithm uses the backtracking 
technique based on the FORTRAN program given by Redner [6]. As described in detail 
in [6], all clusters are built successively according to Martin’s algorithm. Once a cluster 
of maximum size nmax is constructed, then the cluster sites are removed intermittently, 
in the reverse order that they were added, so that the enumeration proceeds to 
completion. If the nth cluster site is attached to the j th  site, then the j th  site is called 
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the root site. Once ajth-order site is removed, its location becomes j-prohibited, which 
means that additional sites cannot be added to this prohibited site until it is 'freed' at 
a later stage in the enumeration. Beginning with a single occupied site, the program 
adds sites to it. More generally, the program adds new sites to the available sites which 
are nearest neighbours of the current root. When no site can be attached to the j th  
root, the order j is incremented and the program then attempts to add another site to 
the cluster. If, however, the j th  root or a lower-order root makes the cluster non-rigid, 
e.g. the j t h  root is a singly connected site, we do not need to enumerate the rest of 
clusters by adding a site on the (j+ 1)th or higher-order root. We can simply 'free' 
the nth prohibited site and proceed from there. Specifically, after line 20 in the program 
of [6] we check whether a root of order j or less makes the cluster non-rigid. (Note 
that we cannot test the non-local property.) If the cluster is non-rigid the control is 
transfered to line 22 instead of line 21. The clusters generated in this way are not 
necessarily rigid. We then test the rigidity of these clusters by calculating the number 
of zero-frequency modes. 

We have tested this partial enumeration method on a Masscomp 5700 computer 
(about three times slower than a Vax8650) to enumerate site-rigid clusters on a 
site-diluted triangular lattice for the central force model. For the rigid animal, we 
assume that 

C ( n ) - n P e r A n  (1) 

where C ( n )  is the number of rigid clusters having n sites and Or is the corresponding 
critical exponent. The square radius of gyration with respect to the centre of the mass 
R: for a rigid cluster of n sites is defined as 

1 2 R: = - 2 ( ri - r,) 
n i  

and the mean-square radius of gyration with respect to the centre of mass, p n ,  is 

where ri is the position vector of site i, r, is the vector of the centre of mass of the 
rigid cluster, y n  denotes all rigid clusters having n sites, and Y, is the correlation length 
exponent for the rigid animal. 

For n = 14, using the program presented in [6], it takes about 87 minutes CPU time 
to count the lattice animal and about 6 hours CPU time to count the rigid animals. 
Using our new program, it takes 1 1  minutes to count the rigid animal and calculate 
the radius of gyration. 

We have extended the series of the site-rigid animal enumerated by Prunet and 
Blanc [4] to order p" (five more terms). We also calculate the radius of gyration to 
the same order. These calculations took about 40 hours CPU time. Specifically, the 
series x2 we obtained is 

n n 

and the series x1 is 

x1 =C C ( n ) K "  - ( 1  -,!IC)'.-' ( 5 )  
n 

where K is the fugacity and K , =  l / A  is the critical value of K.  
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The series are listed in table 1, where c, is the rigid animal and d, is the radius of 
gyration multiplied by number of site n. We also list the ordinary animals [7] a, and 
the number of clusters b, generated by our method for comparison. We used the Pad6 
approximant and differential Pad6 approximant [8] to extrapolate the exponents 0, 
and v,. To analyse the series, we get another series [9] x3 = Z, np,K" - (1 - K)-"  
which is the term-by-term expansion of the quotient of x2 and x, , where a = 2 v,+ 2. 
Since the critical point for this series is exactly 1, we can obtain the exponent vr very 
accurately. Using this value, we can analyse the series x1 and x2 and locate the critical 
point K ,  and critical exponent 0,. Figure l ( a )  is the pole-residue plot for series x3 
from which we obtained v, = 0.744 f 0.008, which is compared with the correlation 
length exponent for the lattice animal Y = 0.649 f 0.009 [ 101 and v = 0.6408 f 0.0003 
[ 1 11. From figures 1 ( b )  and 1 ( c )  we obtained 0, = 0.57 f 0.02 and K, = 0.429 f 0.009, 
which is consistent with previous estimates [3,4]. We also used the ratio method to 
analyse the series and the results are consistent with the above analysis. 

This method of generating clusters enables us to enumerate the clusters with no 
free ends on a square lattice up to p" (which takes 40 hours CPU time). Harris [12] 
has mapped a number of problems (e.g. lattice animals, localisation and peicolation) 
which need clusters with at most two free ends onto problems which need clusters 
with no free ends. Using the clusters we have, we could calculate the series for these 
problems with more terms. 

In summary, we have presented a more efficient method for enumerating rigid 
animals and the clusters with no free ends. We have extended the series enumerated 
by Prunet and Blanc to five more terms and calculated the exponent of the radius of 
gyration for the site-rigid animal, which is found to be larger than that of the lattice 
animal. 

I would like to thank Dr R Kozack for his critical reading of the manuscript. I also 
thank the referee for useful comments. This work is supported by the NIH under 
grant no 4-60357. 

Table 1. The coefficients of the series on the triangular lattice. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 
3 

11 
44 

186 
814 

3 652 
16 689 
77 359 

362 671 
1 716 033 
8 182 213 

39 267 086 
189 492 795 
918 837 374 

4 474 080 844 

1 
0 
L 
3 
8 

17 
64 

243 
801 

2 763 
9 763 

34 361 
120218 
423 380 

1 502 179 
5 347 909 

19 069 574 
68 185 668 

1 0.00 
3 1.50 
2 2.00 
3 6.00 
6 20.40 

14 72.00 
31 228.86 
69 693.75 

151 1998.68 
335 5 673.90 
747 15 819.98 

1671 43 439.32 
3 749 117 722.02 
8 487 317 347.34 

19 432 853 275.81 
44 882 2 290 983.25 

104 220 6 101 195.00 
242 804 16 127 592.00 
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0.38 o,39 0.40 o.41 0.42 0.43 0.41 Figure 1. The pole-residue plots for the series ( a )  
Pad6 approximant x3, ( b )  XI and ( c )  x2. 
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